

Certificates in a Nutshell

Jens Jensen, STFC Leader of EUDAT AAI TF

In a nutshell...

- Mature, Robust, Ubiquitous
 - Have been around for decades
 - Interoperable supported by every OS, every language
 - Used everywhere (e.g. e-commerce, banking)
- Very, very, secure – ... if done right!
- Two factor authentication
 - Something you have
 - Something you know

... don't get distracted by the technical and implementation details

In a nutshell...

À CERTIFICATE IS AN AUTHORITATIVE TIMELY ASSERTION OF THE ASSOCIATION OF A PUBLIC KEY WITH AN IDENTITY

- Where the identity is a global name
 - and a description of what it is
 - or more precisely what it can do

Public Key Cryptography

- Two halves of key:
 - Public can be shared with everyone (usually)
 - Private secret, must be protected
- Need to link *public key* to *identity*
 - In a PKI, this is the role of the CA (hierarchy)
 - ... done with the certificate
 - (Contrast PGP with its anarchy)
- Zero knowledge proof
 - Prove possession of the private key
 - Without revealing it ("NP

Asymmetric Cryptography

- If E is encrypt (encode with public key)
- And D is decrypt (encode with private key)
- Then E(D(x)) = x = D(E(x))
 - Except for pathological cases
- And E contains (almost) no information about D
- Depends on maths
- Slower than symmetric key encrypt/decrypt
 - Use E, D, to agree symmetric key

Anatomy of a certificate

X.509: original specification for certificates

Create key pair (public, private)

Create CSR: certificate signing request

Submit request to a Certification Authority

Persuade the CA to bless the certificate (via a Registration Authority)

- By personal contact with Registration Authority
- Or linking identity management system to CA
 Shib → X.509 (e.g. UK)
 - Kerberos \rightarrow X.509 (e.g. FNAL)
- Or certificates can be issued to a community
 - Sometimes...
 - Shared certificate, e.g. via a portal
 - Lower level of assurance (usually)
 - Restrict user actions via portal (= policy)

What Are Certificates Used For?

11010010

- Authentication
 - Identifying the entity at the end of a remote connection
 - Ensuring that it is the same entity every time
- Digital signatures (/electronic signatures)
 - Non-repudiation (maybe)
 - Code signing
- Timestamping services
- Encryption short time, short messages
 - E.g. signed email (S/MIME)
- "Robots" (Grid) automated agents acting for user

Timeliness of Information

- Re-check at renewal/rekey
 - End of certificate lifetime
- Revoke if "compromised"
 - Certificate revocation lists take a while to get distributed (~hours)
 - OCSP slowly increasing use
- Circumstances for revocation
 - Compromise of private key urgent!
 - Certificate no longer needed
 - Information no longer correct

Timeliness of Information

- CA long lived certificates
 - 3-20 years
 - Are they secure on this timescale?
- End entity Long lived certificates (1-3 years)
 Identity doesn't change (often)
- Separate authentication and authorisation
 Authorisation is short lived...
- End entity SLCS
 - Conventionally (=grid) up to 1 Ms
 - Could contain authorisation information (cf proxies)

Current Issues

- Signatures:
 - MD5 based signatures vulnerable/broken
 - SHA1 based signatures increasingly vulnerable
 - SHA2 secure but not widely supported
- Naming
 - UTF-8 in common names (from printableString)
 - Using string representations of names
- "Good enough" software

"Delegating" Certificates

- Getting credentials to some remote entity...
- Globus approach (GSI, RFC 3820)
 - "Proxy certificates"
 - MyProxy
- gLite (EMI) delegation API
- mod_gridsite
- Contrail: use OAuth2
- OGF working group: IDEL-WG

Delegating with GSI proxies

1110100101

- ... greatly simplified
- •Private key never crosses the network
- VOMS uses attribute certificates (RFC 3281)
- User certs are not allowed to sign other certs
 - "Hack" for Globus, using name restr.
- •How to interpret multiple VOMS extn's
 - OGF VOMSPROC-WG
- VOMS can also embed SAML

Anatomy of a CA

- A CA certificate
 - Which signs users' (or rather end entities) certificates
- A certificate policy
- A certification practices statement
- Infrastructure
 - Archive
 - User Support
 - Handling notifications
- Audits, compliance, certification

Community View

- All need to trust the CA
 - (or rather each other's CAs)
- Occasional rekeys and rollover
 - New certificates, same names
 - Invalidates old signatures
 - Only names are persistent
- Naming: X.500
 - And domainComponents (RFC 2247)
 - /DC=eu/DC=eudat/DC=federation/CN=jens jensen

CAs for EUDAT

- Infrastructure CAs:
 - Reuse the ones for grids
 - IGTF (www.igtf.net), NRENs (www.terena.org)
- Browser-facing certificates
 - Comodo via Terena
- Personal certificates
 - EUDAT-internal CA
 - Hide from users
 - Use external identity assertions and attributes

Certificates in EUDAT

- Demonstrators in Stockholm
 - Reusing Contrail portal
 - Challenge: integrate with user portals
- Need to distribute CA certificates
 - Trusted repositories (compare web browser)

Further Experimenting

- Get your browser to save a remote certificate
 Or inspect -
- Experimenting with certificates OpenSSL openssl x509 –text –noout –in cert.pem openssl ca –in req.pem –out cert.pem openssl asn1parse –i –in cert.pem

Further Reading

- Certificate profile
 - RFC 5280
 - GFD.125 (soon to be updated)
- Want to know more about CAs?
 RFC 3647
- Delegation...

In a nutshell...

- Mature, Robust, Ubiquitous
 - Have been around for decades
 - Interoperable supported by every OS, every language
 - Used everywhere (e.g. e-commerce, banking)
- Very, very, secure
 ... if done right!
- Two factor authentication
 - Something you have
 - Something you know

Questions, Comments, ...

→ jens.jensen<>stfc.ac.uk

