European Collaborative Data Infrastructure EUDAT
- Training on EUDAT Principles -

Dr.-Ing. Morris Riedel
Federated Systems and Data
Juelich Supercomputing Centre (JSC)

Adjunct Associate Professor
School of Engineering and Natural Sciences
University of Iceland
Outline

• Motivation & EUDAT & IAGOS Context
• Short Training on Key Principles
 – How to create a collaborative data infrastructure
 – How to create a registered domain of data
 – How to perform policy-based data replication
• Summary & Possible Actions
• References
Motivation & EUDAT & IAGOS Context

Dr. Morris Riedel (m.riedel@fz-juelich.de), IAGOS-ERI Meeting 2013, San Lorenzo del Escorial, Spain
European Collaborative Data Infrastructure EUDAT - Training on EUDAT Principles
Big Data Waves – Surfboards – Breakwaters
How can we manage the rising tide of scientific data

High Level Expert Group on Scientific Data Report
Lists unsolved questions
Outlines challenges
Provides visions

A Surfboard for Riding The Wave Report
Lists 4 key action drivers
Identifies 3 strategic goals
Clarifies Data Scientists

’Concrete’ Next Steps → ’Breakwaters’
Data trends

- Where to store it?
- How to find it?
- How to make the most of it?

- How to ensure interoperability?
- How to engage in cross-disciplinary science?

Dr. Morris Riedel (m.riedel@fz-juelich.de), IAGOS-ERI Meeting 2013, San Lorenzo del Escorial, Spain
European Collaborative Data Infrastructure EUDAT - Training on EUDAT Principles
In commercial environments
Big Data is all about
Volume – Variety – Velocity

‘Big Data is data that becomes large enough that it cannot be processed using conventional methods.’

The next generation radio telescope for science...
The square kilometre array
... 1 PB in 20 seconds

LOFAR
test site Jülich
EUDAT – Collaborate to tackle ’big data’

[2] EUDAT Web page

Dr. Morris Riedel (m.riedel@fz-juelich.de), IAGOS-ERI Meeting 2013, San Lorenzo del Escorial, Spain

European Collaborative Data Infrastructure EUDAT - Training on EUDAT Principles
Training & Working habits with Communities

Example: Persistent Identifiers for Data (PIDs)

MINDSET
- Do we all think that PIDs for scientific data are important?

SKILLSET
- How do we use PIDs and what type of PID structures are relevant?
- What are the techniques to perform data replication and how it relates to PIDs and metadata?

TOOLSET
- Do we use (common) services and tools to work with PIDs being part of community practice?
- Are there established (common) data replication services and tools available we can use daily?

Dr. Morris Riedel (m.riedel@fz-juelich.de), IAGOS-ERI Meeting 2013, San Lorenzo del Escorial, Spain

European Collaborative Data Infrastructure EUDAT - Training on EUDAT Principles
Explore possibilities for IAGOS & EUDAT

MINDSET
- Smooth metadata sharing with other communities (e.g. climate communities), MOZAIC and IAGOS data policies good example in science for re-use
- Persistent Identifier (PIDs) for IAGOS/MOZAIC datasets to get referenced clearly in publications (example US & Owen Cooper this morning)
- Clarify long-term relationships to sustain the ecosystem around the IAGOS/MOZAIC database and ensure its free access for science & society

SKILLSET
- IAGOS/MOZAIC database: observations (1994 – today)

TOOLSET
- Safe Replication of Datasets for better re-use by scientific research communities in Europe and beyond (e.g. good contacts to US)

Dr. Morris Riedel (m.riedel@fz-juelich.de), IAGOS-ERI Meeting 2013, San Lorenzo del Escorial, Spain
European Collaborative Data Infrastructure EUDAT - Training on EUDAT Principles
Possible Concrete example: Discussions over lunch Morris + Owen…

- **IAGOS & EUDAT & Research Data Alliance (RDA)**
 - Promote a case for world-wide scientific IAGOS research

- **RDA : Share Open Research Data w/o barriers**
 - Here: EU (Morris&IAGOS) & US (Owen et al.) + China?
 - Create interest group (e.g. similar as the agricultural interoperability group, but with IAGOS interests)
 - Align with RDA Big Data Analytics group that is interested to work with MOZAIC, and show interop use cases (Owen)

IAGOS/MOZAIC database: observations (1994 – today)
How to create a collaborative data infrastructure

Training on ‘Skillset Level’

Dr. Morris Riedel (m.riedel@fz-juelich.de), IAGOS-ERI Meeting 2013, San Lorenzo del Escorial, Spain
European Collaborative Data Infrastructure EUDAT - Training on EUDAT Principles
How can we link to the existing IAGOS data infrastructure to create benefits for science?

Blueprint of a Collaborative Data Infrastructure

The Collaborative Data Infrastructure - a framework for the future

- Trust
- Data Curation
- Data Generators
- Users
- Community Support Services
- Common Data Services

User functionalities, data capture & transfer, virtual research environments

Data discovery & navigation workflow generation, annotation, interpretability

Persistant storage, identification, authenticity, workflow execution, mining

CLARIN, LifeWatch, ENES, EPOS, VPH, INCF, etc.

6 Core Infrastructures - more second round infrastructures

=> 12 EUDAT data centers

[4] High Level Expert Group on Scientific Data, Riding The Wave – How Europe can gain from the rising tide of scientific data, October 2010

How can we link to the existing IAGOS data infrastructure to create benefits for science?
Conceptual View of a CDI

Analysis of existing community data infrastructure

- community interactions based on abstract model (Kahn & Wilensky, 2006)
 - ’triple’: Data + Metadata + Handle (PID) – use it as ’orientation point’!
- used in many meetings and interactions - accepted quickly as reference model
- helped even in improving community organization plans

Definitions/Entities
- originator = creates digital works and is owner;
- depositor = forms work into DO (incl. metadata);
- digital object (DO) = instance of an abstract data type;
- registered DOs are such DOs with a Handle;
- repository (Rep) = network accessible storage to store DOs;
- RAP (Rep access protocol) = simple access protocol
- Dissemination = is the data stream a user receives
- ROR (repository of record) = the repository where data was stored first;
- Meta-Objects (MO) = are objects with properties
- mutable DOs = some DOs can be modified
- property record = contains various info about DO type = data of DOs have a type
- transaction record = all disseminations of a DO

Dr. Morris Riedel (m.riedel@fz-juelich.de), IAGOS-ERI Meeting 2013, San Lorenzo del Escorial, Spain
European Collaborative Data Infrastructure EUDAT - Training on EUDAT Principles
Overlap of several formal partners in IAGOS & EUDAT

Example: EUDAT Centres

- community centre
- EUDAT centre
Clear Task: Identify Common Services

If there are hundreds of Research Infrastructures, how many different data management systems can we sustain?

Are there services you might want to share/re-use with/from other communities?
Example: Current EUDAT Services Focus

<table>
<thead>
<tr>
<th>Common Services</th>
<th>CLARIN</th>
<th>LW</th>
<th>VPH</th>
<th>ENES</th>
<th>EPES</th>
<th>INCF</th>
<th>EC RIN</th>
<th>BioVel</th>
<th>Dixa</th>
<th>CES</th>
<th>SDA</th>
<th>DAR</th>
<th>IAH</th>
<th>PanData</th>
<th>BB</th>
<th>MRI</th>
<th>EM SO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe Replication</td>
<td>X</td>
<td>o</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Data Staging</td>
<td>o</td>
<td>o</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Simple Store</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metadata</td>
<td>X</td>
<td>X</td>
<td>o</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Web-service platform</td>
<td>X</td>
<td>o</td>
<td></td>
</tr>
</tbody>
</table>

X = needed now, o = interested, o = interest, not direct priority

Are there services where IAGOS is interested in to use across Europe?

Dr. Morris Riedel (m.riedel@fz-juelich.de), IAGOS-ERI Meeting 2013, San Lorenzo del Escorial, Spain

European Collaborative Data Infrastructure EUDAT - Training on EUDAT Principles
Example: EUDAT Services in Preparation

- **Metadata Catalogue**: Aggregated EUDAT metadata domain, data inventory.
- **Safe Replication**: Data preservation and access optimization.
- **Data Staging**: Dynamic replication to HPC workspace for processing.
- **Simple Store**: Researcher data store (simple upload, share and access).
- **AAI**: Network of trust among authentication and authorization actors.
- **PID**: Anchor for identification and integrity.

[2] EUDAT Web page
Example: EUDAT user communities

- **EPOS**: European Plate Observatory System
- **CLARIN**: Common Language Resources and Technology Infrastructure
- **ENES**: Service for Climate Modelling in Europe
- **LifeWatch**: Biodiversity Data and Observatories
- **VPH**: The Virtual Physiological Human
- **INCF**: The neuroscience community

- **All share common challenges:**
 - Reference models and architectures
 - Persistent data identifiers
 - Metadata management
 - Distributed data sources
 - Data interoperability
Example: EUDAT Community Centres
‘ScienceTube’: User perspective of CDI

Lessons Learned in this Training Section

 ✓ Accept that many communities have already a data infrastructure, so we need to connect it
 ✓ Knowing triple to organize/understand data plans
 ✓ Understand the major blueprint of a Collaborative Data Infrastructure (CDI)
 ✓ Capable of identifying common data services
 ✓ Knowing the difference between mono-thematic community center and multi-disciplinary centers

Dr. Morris Riedel (m.riedel@fz-juelich.de), IAGOS-ERI Meeting 2013, San Lorenzo del Escorial, Spain
European Collaborative Data Infrastructure EUDAT - Training on EUDAT Principles
How to create a registered domain of data

Training on ‘Skillset Level’

Dr. Morris Riedel (m.riedel@fz-juelich.de), IAGOS-ERI Meeting 2013, San Lorenzo del Escorial, Spain
European Collaborative Data Infrastructure EUDAT - Training on EUDAT Principles
Blueprint for a registered domain of data

We need to understand if this is interesting to IAGOS users, e.g. use in publications
Key Principle of Handle System

- URN, ARK, Handle, DOI, PURL (by HTTP-redirect)
- Critical: Resolution
Example: EUDAT Safe Replication Service

Dr. Morris Riedel (m.riedel@fz-juelich.de), IAGOS-ERI Meeting 2013, San Lorenzo del Escorial, Spain
European Collaborative Data Infrastructure EUDAT Training on EUDAT Principles
Use Persistent Identifiers to Identify Data

• Use Persistent Identifiers (PIDs)
 – Based on the Handle System
 – Used to reference data, including different locations

• Requires a PID Service
 – One example is the EPIC PID service
 – E.g. register a PID specifying a URI
 – EPIC = European Persistent Identifier Consortium
Example: EUDAT Use of EPIC Service

Dr. Morris Riedel (m.riedel@fz-juelich.de), IAGOS-ERI Meeting 2013, San Lorenzo del Escorial, Spain
European Collaborative Data Infrastructure EUDAT - Training on EUDAT Principles
Lessons Learned in this Training Section

✓ Understand the structure of one possible registered domain of (scientific) data
✓ Accept that the handle system is a pragmatic way to identify data not bound to location
✓ Knowing that you need Persistent Identifier (PIIDs) as reference to digital objects (data)
✓ Capable of creating a theoretical use case that is using PIIDs and an associated PID service (EPIC)
How to perform policy-based data replication

Training on ‘Skillset Level’

Dr. Morris Riedel (m.riedel@fz-juelich.de), IAGOS-ERI Meeting 2013, San Lorenzo del Escorial, Spain
European Collaborative Data Infrastructure EUDAT - Training on EUDAT Principles
Blueprint for safe data replication

Better accessibility of scientific data
Make data referencable
High degrees of reliability and trust
More optimal data curation

Dr. Morris Riedel (m.riedel@fz-juelich.de), IAGOS-ERI Meeting 2013, San Lorenzo del Escorial, Spain
European Collaborative Data Infrastructure EUDAT - Training on EUDAT Principles
Safe Data Replication Approach

• Idea: Safe replication between 1 scientific community center and N data centers
 • Replication within a ‘registered domain of data’ (i.e. PID assignment)

• Flexibility, scalability and management require policy-based data management (i.e. rule engine)
 • With local policies at centers and global policies for infrastructure(s)

• Islands (community + data centers) in parallel & close interaction → merge?
 • Enabling community as process for acknowledging existing data management plans of communities

Dr. Morris Riedel (m.riedel@fz-juelich.de), IAGOS-ERI Meeting 2013, San Lorenzo del Escorial, Spain
European Collaborative Data Infrastructure EUDAT - Training on EUDAT Principles
We could form long-term partner relationships to preserve the observation data and services and to make it largely available.
Example: EUDAT Science Relationships

Are there scientific relationships across EU (or US) we could support?

Dr. Morris Riedel (m.riedel@fz-juelich.de), IAGOS-ERI Meeting 2013, San Lorenzo del Escorial, Spain
European Collaborative Data Infrastructure EUDAT - Training on EUDAT Principles
Example: EUDAT Safe Replication Service

- **Metadata Catalogue**: Aggregated EUDAT metadata domain. Data inventory.
- **Safe Replication**: Data preservation and access optimization.
- **Data Staging**: Dynamic replication to HPC workspace for processing.
- **Simple Store**: Researcher data store (simple upload, share and access).
- **AAI**: Network of trust among authentication and authorization actors.
- **PID**: Anchor for identification and integrity.

EUDAT

Data PID Metadata
Create M replications at different data centers for N years, exclude data centers X to data centers Z from the replication scheme and make them all accessible by maintaining the given access permissions.
EUDAT: Example of Safe Replication

Dr. Morris Riedel (m.riedel@fz-juelich.de), IAGOS-ERI Meeting 2013, San Lorenzo del Escorial, Spain
European Collaborative Data Infrastructure EUDAT - Training on EUDAT Principles
Overview: Manual Upload Replicated File

- Need to understand federations and zones in iRods
Overview: Rule-based data management

• Need to understand rules & micro-services in iRods

Dr. Morris Riedel (m.riedel@fz-juelich.de), IAGOS-ERI Meeting 2013, San Lorenzo del Escorial, Spain
European Collaborative Data Infrastructure EUDAT - Training on EUDAT Principles
Use of Persistent Identifier (PID) Service

Example of REST-based message exchange using the JSON format

Community center Storage & Compute Resources [detailed view on the infrastructure integration issue of the iRODS and EPIC inter-working]

Dr. Morris Riedel (m.riedel@fz-juelich.de), IAGOS-ERI Meeting 2013, San Lorenzo del Escorial, Spain
European Collaborative Data Infrastructure EUDAT - Training on EUDAT Principles
Lessons Learned in this Training Section

✓ Understand that long-term relationships matter

✓ Knowing the difference between simple backups and safe data replication

✓ Understand key aspects of policy-based replication by defining policies on different levels (i.e. rules global/local/infrastructure)

✓ Having an idea for what rules can be used in the context of the registered domain of data
Summary & Possible Actions
Summary

- Services are available
 - Safe Replication and Data Staging in operation for a few data centers of core communities
 - Simple Store and MetaData Services will come soon
 - Production means enabling ’the services’ together with user communities
- Worked hard to get this done and to understand how to interface with communities
 - Each community is different – it is a long-term process of working together
- Needed to chose for some technologies – but take care of technology lock-in
 - iRODS just as a thin layer for example and not as a system doing all
- There is a far way between ”we know how it works” and having a ”real service”
 - Communities & researchers are interested in operational services
- Go ahead and extend the collaborative infrastructure with three levels of thinking
 - Working habit of Mindset, Skillset, Toolset
Possible Actions Together

- Synergies between EUDAT and IAGOS seem to exist (also through common partners)
 - Opening data to much more communities, increase IAGOS/MOZAIC uptake
 - Long-term preservation and link of metadata to others
- We need to understand IAGOS better from EUDAT perspective
 - Data Management Plans and links to added value services
- EUDAT is forming Working Groups
 - Dynamic Data (database, real-time transmissions), Scientific Workflows, etc.
 - Explore possibilities for creating an MoU between IAGOS and EUDAT
- Research Data Alliance (RDA) for research data sharing without barriers
 - Community Group for the IAGOS community to link with US(+China) activities?
 - Something similar as ‘Agriculture Interoperability Interest Group’
Thanks for the attention.

Get in contact with us:
http://www.eudat.eu

Join the Research Data Alliance
http://rd-alliance.org/

Dr. Morris Riedel (m.riedel@fz-juelich.de), IAGOS-ERI Meeting 2013, San Lorenzo del Escorial, Spain
European Collaborative Data Infrastructure EUDAT - Training on EUDAT Principles
References

Dr. Morris Riedel (m.riedel@fz-juelich.de), IAGOS-ERI Meeting 2013, San Lorenzo del Escorial, Spain
European Collaborative Data Infrastructure EUDAT - Training on EUDAT Principles
References

