
PIDs & DOs 

Willem Elbers 

The Language Archive  

MPI for Psycholinguistics, Netherlands 

Slides inspired by Daan Broeder and  

Tobias Weigel 

 

EUDAT Training, Rome, 28 October 2013  



Contents 

 

• Persistent Identifiers 

• Handle System 

• PID services: EPIC, Data-Cite, … 

• PID issues: granularity, part identifiers, … 

• PIDs & DO replication 

 

 



Data 

• The increase of data volume also brings an increase in 

the number of data objects 

 

 



Data creation cycle 

raw 
data 

citable 

publication 

registration &  

preservation 

analysis &  

enrichment 

temp. 

data 
citable 

data 

referable 

data 

Persistent and 
Robust 
Identification 
in global context 



     Standard we use URIs (URLs) for referencing 
resources. However: the resource is moved - 
host name change or file system changes 

• Problem for embedded references inside the 
archive 

• …but especially outside the archive 

• Can be seen as an organizational problem 
– W3C proposes Cool-URIs 

• But difficult to solve, hence the PID frameworks  

      

Referencing Resources 
     PID Frameworks: PURL,HS, ARK 
• Give every resource a unique 

persistent identifier: PID 
• Every PID associated with one 

(or more) URLs 
• Resolving process built into 

applications or available 
through plug-ins.   

 
This comes at a cost: 
• Added layer of infrastructure 
• Must be managed 
• Must run with high availability 
• Must be very sure that this can 

be handled by our archives also 
in the long term.   

• But can be used for extra 
services 

 
 

 
 
 

client 

resolver 

DO 
repository 

PID 

URI 

URI 

PID <-> URI 
maintenance 



What is a persistent identifier? 

• Identifier pointing to a resource 

– No knowledge of the resource 

 

• Responsibility of the owner, 

identified by the prefix, to keep it 

up-to-date 

 

• PIDs are globally unique 

 

prefix 

1110001
011...11
1011210

1 

1839/abc123 

resolution 

postfix 



What is the problem? 

• URLs have proven not to be stable over time: “Link rot” 

• PIDs are stable over time 

 
Today 2015 2020 

111000
1011...1
112101 

111000
1011...1
112101 

404 
Not found 

http://www.example.com http://www.example.com http://www.example.com 

Today 2015 2020 

111000
1011...1
112101 

111000
1011...1
112101 

111000
1011...1
112101 

http://www.example.com http://www.example.com http://www.moved.com 

1839/abc123 1839/abc123 1839/abc123 



Redirection layer 

111000
1011...1
112101 

http://… 

1839/abc123 

http://… http://… 

111000
1011...1
112101 

111000
1011...1
112101 

Stable 

Unstable 



PID requirements 
• Attach multiple URLs to a PID 

• Allow part identifiers for complex 

objects. Granularity issue. 

• Allow attaching of extra data 

records to the PID (MD5 check,…) 

• Actionable (URLified) PIDs 

• HTTP proxy for resolving (use port 

80 only) 

• REST or SOAP interface for 

administration of PIDs from 

applications 

• Secure, fine grained, administration 

• Delegation of PID administration to 

other organizations 

 

 

• Distributed, robust, highly-

available, scalable 

• No single-point of failure  

• Acceptable non-commercial 

business model 

• Control by user community 

 

http://pidresolver.gwdg.de/mypid 



Handles Resolve to Typed Data 

URL 2 http://a-books.com/…. 

DLS 9 acme/repository 

HS_ADMIN 100 acme.admin/jsmith 

XYZ 1001110011110 12 

Handle data Handle Data type Index 

10.123/456 URL 1 http://acme.com/…. 



Handle Resolution 

GHR 

is a collection of 
handle services, 
each of which  
consists of one or 
more replicated sites, 

Site 1 Site 2 

Site 1 

Site 2 

Site 3 …... Site n 

Client 

The Handle System 

LHS 

LHS LHS 

LHS 

each of which may 
have one or more 
servers. 

123.456/abc URL 4 http://www.acme.com/ 

http://www.ideal.com/ 8 URL 

#1 #2 #n #4 #3 

#1 #2 

... 



Shared PID service 

• In principle possible for every repository to run its own full PID service 

• but not every organization is willing or able to do that 

• also there is an advantage of increased reliability by replicating services 

• etc.. 

 

• DataCite & EPIC offer services based on HS for data PIDs since 2010 

• Both offer APIs for creating and managing PIDs (handles) 

• DataCite targeted to complete data-sets and includes also a specific 
metadata scheme for data-set publication 

• EPIC targeted more at data management of individual resources 
allowing association of extra data with the PID: checksum, link to 
flexible metadata, … 

• EPIC is only a steward for the PIDs, no lock-in 

• There are more offers but status unsure: PERSID, ARK  

• Some communities & infrastructures use several PIDs 



Granularity 

 

At what level of granularity do we issue PIDs for data? 

 

Some recommendations from CLARIN community  

• An existing identifier scheme for a type of resources e.g. ISBN, 
suggests that level of granularity should be retained,  

– no new PIDs should be issued without very good reasons, such as for chapters. 
Those should addressed using part identifiers 

• If the resource is associated with the complete content of a digital 
file, an individual PID should probably be assigned for this resource. 

• If the resource is autonomous and exists outside a larger context, it 
deserves a PID 

• If a resource should be citable apart from any containing resource, 
an individual PID should probably be assigned for this resource. 

 



A 

y 

x z 

• Wasteful to issue a pid for each part (think of 
100k entries in a lexicon). So use part 
identifiers. 

• Resolver can make an adequate translation  

     “A#z” -> “objectA?part=z” This requires 
enough flexibility  from the resolver to 
accommodate the object server. 

• The syntax of “Z” should be standard for the 
specific data type. Loan from existing 
fragment identifier syntax standards. 
 

1839/A 
1839/A#x 
… 
1839/A#z 

1839/A: 1839/A#x, 1839/A#y, 1839/A#z 

pid 
resolver 

object 
server 

1839/A#z 

http://oserver/objectA?part=z 

1839/A 

http://oserver/objectA A 

y 

x z 

z 

Part identifiers 



PIDs and data architecture 

DOs => multiple copies, versions, representations 

PID is not only about access but also about identity 

• DO copy: bitstream equality 

• DO version: difficult to administrate 
– ARK syntax offers facilities for variants   

• DO representation: HTTP content negotiation, 
difficult to administrate 

• Pragmatic approach 
– PIDs should allow resolving + some tightly coupled 

metadata 

– Stay away from versioning policy (community specific) 

– But … 

 

 

 



DOs and PIDs  

Objects Should Wear Their Identifiers 

A valuable technique for provision of persistent objects is to try to 
arrange for the complete identifier to appear on, with, or near its 
retrieved object. An object encountered at a moment in time 
when its discovery context has long since disappeared could 
then easily be traced back to its metadata, to alternate versions, 
to updates, etc 

• PIDs are a registry 
– PID -> URL + metadata 

• Text based resources allow embedding a PID (in the text e.g. 
ISBN 

• How about binary files? 

• Need resolving checksum to PID 
– Can be a service of PID service provider 



To sum it up 

• PIDs are a generic tool with clear boundaries 

 

• Handles provide other useful features 

 

• EUDAT is using the EPIC handle service 



Thank you for your attention 


